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Abstract 
 
 A high-order finite-difference code has been 
developed with the ability to simulate waves in plasmas 
coupling Maxwell Equations with fluid species equations. 
Originally developed to examine the radio blackout 
problem, the code utilizes 6th-order finite-differences with 
10th-order filters in space and 4th-order Runge-Kutta in 
time in order to minimize the number of grid points while 
retaining the fidelity of the solution. The code also uses 
multiple overlapping grids allows for solving complex 
configurations in parallel. 
  
 
 

I. INTRODUCTION 
 
Over the past few years the Air Force has been interested 
in development of high fidelity simulation capabilities to 
investigate the long standing problem of radio blackout 
during reentry.  To address this issue, a high-order finite-
difference code has been developed by the Air Vehicles 
Branch of the Air Force Research Laboratory which can 
simulate electromagnetic plasma waves.[1-3]  The current 
configuration requires that the plasma be generated by 
another source, and the background electron density and 
temperature are fed into OHMS (Overset High-order 
Maxwell Solver) which solves the propagation 
problem.[2-3]  
 
 

II.  METHODOLOGY 
 
 . 
A. Equation set 
 
The equations for plasma propagation by the electrons can 
be written as: 

 

  
where the subscript “1” indicates a perturbation of the 
variable.  In non-dimensional form, the equations reduce 
to [3]: 
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where the perturbation subscript “1” has been suppressed, 
Ω

p
 is the electron plasma frequency multiplied by the time 

scale, ςe is the perturbation electron density multiplied by 
its charge and βth is the ratio of the root-mean-squared 
molecular velocity of the electrons based on the reference 
temperature (Te,ref) divided by the speed of light in 
vacuum.  Thus, the code solves 10 equations needing 12 
variables of storage. 
 
 
B. Computational Method 
 
The OHMS code uses 6th-order finite-difference modeling 
in generalized curvilinear coordinates:[3-5] 
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for any variable F at point j being differenced in the ξi 
direction.  The order of accuracy is satisfied by restricting 
the coefficients: 
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The resulting discrete equations for the partial derivatives 
are solved implicitly using a tridiagonal solver.  The 
effective wavenumbers resulting from explicit and  
compact differencing is shown in figure 1.  Added to the 
graph is the equivalently scaled spectral response of Finite 
Difference Time Domain (FDTD). 
 
 

 

 

 
Figure 1. Reduced wavenumber for different schemes. 
Top: Wavenumber k∆x vs effective wavenumber k’∆x for 
λ = 2∆ to ∞.  Middle: 10 to 6 points per wavelength.  
Bottom: 20 to 10 points per wavelength. 
 

 
C. Filtering 
 
Filtering is utilized both for stability [4,5] and for the 
absorbing boundary conditions[6].  The filters are 
designed so that wavelengths λ = 2∆ are completely 
eliminated while long wavelengths are unattenuated. The 
basic filter equation is solved using a tridiagonal solver: 

( )∑
=

−++− +=++
N

0n
njnj

n
1jfj1jf FF

2
aFFF ˆˆˆ αα  

where for 10th order: a0 = (193 + 126 αf)/256, a1 = (105 + 
302 αf)/256, a2 = -15(1 - 2 αf)/64, a3 = 45 (1 - 2 αf)/512, 
a4 = -5(1-2 αf)/256,  a5 = (1-2 αf)/512, and αf varies from 
0 to 0.499 (typical values are 0.3 to 0.49).  The transfer 
function is given by: 

 
where ω = 2 π ∆ / λ. Figure 2 for different values of αf. 
   
D. Chimera 
 
 OHMS has the capability for multiple overlapping 
grids (Chimera) to be solved in parallel. The grid 
communication is given via Lagrangian interpolation.[7,8]   
The Chimera paradigm allows for the easy 
implementation of the scattered field/total field interface 
by defining each grid as either a scattered or total field 
grid.  The incident fields can then be added to or 
subtracted from the interpolated values during the 
message passing.[3] 
 
 
 

 
Figure 2. Transfer function for filter orders 2-8 for 
various values of αf. 
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III.    RESULTS 
 
Propagation of a signal from an horn antenna was 
simulated using a background plasma generated by a non-
equilibrium re-entry code developed by Josyula and 
Bailey.[9]  For the given antenna location, the maximum 
electron temperature was T = 0.1 eV.  At this temperature, 
no effect was seen by the addition of the electron 
temperature – indicating that for most re-entry problems, 
solving an auxiliary ordinary differential equation for the 
current is all that is necessary. While removing only a 
single equation, the number of variable storage is reduced 
by 2 and 25 fewer tridiagonal solves are needed per time 
step.  To see the effect of the extra equation, the reference 
electron temperature was artificially raised to 100 eV and 
5 keV.  As seen in figure 3, there is almost no change in 
the electric field from 0.1 to 100 eV.  At 5 keV 
there is a noticeable change in the field radiating from the 
horn.  In this case, the signal frequency is below the peak 
plasma frequency for the electron density distribution 
causing the wave to be highly attenuated.  Looking at the 
current a few grid points above the horn aperture in figure 
4, there was no noticeable difference in the current for 0.1 
to 100 eV reference temperature.  As seen by the 
instantaneous E field in figure 5, the effect of the plasma 
temperature is greatest nearest the surface of the vehicle, 
and its influence drops off as the distance increases. 
 
 

IV. SUMMARY 
 
 A high-order finite-difference methodology has been 
presented for simulating electromagnetic plasma waves in 
complex configurations.  For most reentry problems, the 
effect of electron temperature will likely be confined to 
near the vehicle body and appears to be negligible in 
terms of the radio blackout problem.  While not currently 
implemented, the addition of the Je×B0 term is straight 
forward, requiring only three more variables of storage. 
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Figure 3. Effect of the electron temperature on the wave 
propagation from the horn antenna. Top: Te,ref = 0.1 eV. 
Center: Te,ref = 100 eV. Bottom: Te,ref = 5.0 keV. 
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Figure 4. Contours of current above the horn antenna. 
Top: Te,ref = 0.1 eV or 100 eV. Bottom: Te,ref = 5.0 keV 
 

 

 
Figure 5. Effect of electron temperature on the electric 
field strength as it propagates from the horn. 
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